sPHENIX Science Case and the Reference Design

Dennis V. Perepelitsa Brookhaven National Laboratory

16 June 2015
Large-Acceptance Jet and Upsilon
Detector for RHIC Workshop

sPHENIX Science Case

- Goal: quantitative understanding of the QCD medium over a range of length scales and temperatures
- Reference design developed to demonstrate access to the physics
 - → often, in response to guidance received by DOE Review Committee

PHENIX Reference design

Solenoid

Reference design

• $|\eta| < 1$, $\Delta \Phi = 2\pi$

BaBar magnet, 1.5 T

• reconfigured **pixel** + new large area **strip** detector to measure *charged particles*

EMCal to measure *photons* & electrons

Inner+Outer HCal to measure *jets*

Jets

unbiased & over a wide kinematic range

Jet physics program photon photon $\mathcal{B}_{\texttt{AA}}$ $30^{\circ} < \Delta \phi < 60$ Hadrons $0^{\circ} < \Delta \phi < 30^{\circ}$ Jets D Mesons 0.3 photon b Jets Dijets $(P_{T,1})$ $60^{\circ} < \Delta \phi < 90$ Ensemble-based measurements γ +Jets (p_{τ}^{γ}) and x+hadron correlations Z^0 +Jets (p_T^Z) Au+Au 30-50% add low p₊ reach Double b-Tag $(p_{T,1})$ sPHENIX projection G. Roland, QCD Town Hall 10 80 hydro energy density profile 10^{2} 10 10^{3} $p_{_{\rm T}}$ (GeV/c) p_{T} [GeV/c]

- High-statistics, differential jet measurements over a wide kinematic range
 - \rightarrow measure at <u>low- p_T </u> (control fakes / resolution)
 - \rightarrow measure at high- p_{T} (capitalize on rate / triggering)
- Measure in p_T regions <u>unavailable to LHC</u>, while providing <u>crucial overlap</u>
 - → <u>differential measurements</u> vs. centrality, reaction plane, etc...

- Jet reconstruction & ATLAS-style background subtraction w/ <u>segmented</u> <u>hadronic calorimeter</u>
 - → successful <u>separation</u> of real jets from HI UE background, with additional rejection techniques <u>extending p_T range</u>
 - → <u>resolution on measured jet energy</u> minimizes systematic uncertainties
- Other options ("particle flow", statistical UE jet subtraction) also being explored

- Latest projected luminosity for 22 weeks Au+Au physics run: 0.1 trillion minimum bias Au+Au events with $|z_{vtx}| < 10$ cm
 - → large untriggered sample reduces biases and systematics
 - → 0.6 trillion w/ mild triggering and no z_{vtx} requirement
- Existing PHENIX DAQ infrastructure samples <u>15kHz</u> at Level-1
 - → extension of kinematic range *far beyond existing RHIC*

Jets: trigger

- Triggering needed in p+p running to sample the equivalent NN luminosity
 - → require <u>unbiased</u> sample of jets <u>down to low p</u>_T

 Solution: wide-area EMCal+HCal "jet patch" triggers

Trigger efficiency

→ require 10 GeV in sliding tower window of $\Delta \eta \times \Delta \phi = 0.8 \times 0.8$

Rejection factor

- → 100% efficiency with <u>no flavor</u> <u>dependence</u>
- Rejection factors for MB p+p events are sufficiently high

Upsilons

with high statistics and good mass resolution

Upsilon physics

- Upsilon states probe the medium at <u>multiple (thermal) scales</u>
 - → similar nPDF effects and comparable yields
 - → minimal recombination at RHIC & LHC
- At the LHC: suppressed Y(1S), but even stronger effects for forward Y(1S) and central Y(2S), Y(3S)
 - → crucial lever arm provided by sPHENIX to understand color screening

Upsilons: mass resolution

- Target: mass resolution of <100 MeV in pp collisions
 - → allows clean separation of Upsilon states
- Achieved by optimizing tracking configuration:
 - → low mass, to minimize Bremsstrahlung tails
 - → large-radius layers to improve momentum resolution

Upsilons: trigger

Rejection factor for MB events

- Solution: minimum energy in 2x2 or 4x4 sliding window of $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$ EMCal towers
 - → sufficient trigger efficiency for E=4.7 GeV electrons, with **high rejection** in p+p
- Allows detailed measurements of R_{AA} vs. N_{part} , p_T , y

$R_{\mathsf{A}\mathsf{A}}$ vs. arDelta

p_T (GeV/c)

Upsilons: electron identification

- Electron identification & charged pion rejection from:
 - → <u>matching</u> track momentum to <u>EMCal cluster energy</u>
 - → and <u>veto</u> on the presence of <u>inner HCal energy</u>
- For 4 GeV electrons, 100:1 rejection with 95% efficiency (p+p) and 70% efficiency (central Au+Au)

hadrons, fragmentation functions, *b*-jets

precision vertex tracking and high- p_T performance

hadrons and FF: tracking

- Baseline tracking solution: reconfigured silicon vertex detector
 - → contains existing VTX Pixels, with new layers for resolution & pattern recognition
- 0.025
 0.015
 0.005

 DT resolution

 on and track finding with

 $=\sqrt{(1.18\%)^2+(0.061\%)^2 p_{\tau}^2}$

- Substantial optimization of the configuration and track finding with
 full GEANT4 simulations to meet physics needs
 40 GeV
 - → optimization of this design & TPC option also being considered

b-jet physics

Ratio of R_{AA} with/without collisional E-loss

- The quenching of heavy quark jets is different:
 - → suppression of radiation at small angles
 - → different sensitivity to <u>radiative</u> vs. <u>collisional</u> energy loss
- LHC measurements of b-jet R_{AA} are at > 80 GeV, consistent with light jets
 - → full *b*-jets at RHIC *probe needed kinematic range*

b-jets: distance of closest approach

- b-jets are "tagged" jet-by-jet by exploiting properties of B hadrons
 - proof of principle method: select jets with <u>one or more tracks</u> which <u>do not point back to primary vertex</u>
- Precise measurement of distance of closest approach (DCA) required
 - → additionally, allows <u>D meson reconstruction without PID</u>

jet+X correlations

acceptance, rate, electromagnetic calorimetry

jet+X correlations

- Recent interest in "surface bias engineering" (and/or "flavor engineering") to examine jets on the away side from a particular near-side trigger object
 - \rightarrow photons, small-cone jets, high- p_T hadrons, etc.
- Large sample of minimum bias data crucial to exploring this physics
 - \rightarrow also allows studying fake jet rejection & min. track p_T cuts

dijet measurements

- Dijet asymmetry measurements are thought to have <u>strong sensitivity</u> to descriptions of jet quenching
 - crucial to vary <u>temperature</u>, <u>scale</u>, <u>and energy</u> for full understanding
- sPHENIX acceptance |η|<1.0 ample for high-statistics measurements

Photon-jet physics 3.5

High γ/π^0 ratio at RHIC and finely segmented (0.025×0.025) EMCal

 \rightarrow allows photon identification to low p_T

High sPHENIX rate and triggering allow for differential measurements

Photon-jet vs. reaction plane!

 $(1/N_{\gamma})(dN/dx_{Jy})$

p+Au physics

... not just a reference system anymore

sPHENIX is capable of exploring novel phenomena in *p*+Au collisions

- → Enhancement in high-p_T charged particles
- → Scaling of jet centrality dependence with proton Bjorken-x
- → Multiplicity-dependent suppression of Y(2S)/Y(1S) in all systems

24

Physics drivers for design

... not to mention cost and schedule considerations